Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients with Glaucoma

Precis (35 words) We validated the performance of prediction of individual Humphrey 24-2 visual field thresholds from 9-field OCT analysis on patients with early to severe glaucoma. Zhihui Guo

Young H. Kwon, MD, PhD
Kyungmoo Lee, PhD
Kai Wang, PhD
Andreas Wahle
Wallace L.M. Alward
John H. Fingert
Daniel I. Bettis
Chris A. Johnson, PhD
Mona K. Garvin, PhD
Milan Sonka, PhD
Michael D. Abramoff, MD, PhD

1 Department of Electrical and Computer Engineering, University of Iowa
2 Stephen A. Wynn Institute for Vision Research, University of Iowa
3 Department of Ophthalmology and Visual Sciences, University of Iowa
4 Department of Biostatistics, College of Public Health, University of Iowa
5 Iowa City VA Health Care System
6 Department of Biomedical Engineering, University of Iowa

*Corresponding author: michael-abramoff@uiowa.edu, The University of Iowa, 11205 Pomerantz Family Pavilion, Iowa City, IA 52242, USA, phone: 319-384-5833.

Financial support: This work was partially supported by NIH grants R01 EY019112, R01 EY018853 and R01 EB004640; the Department of Veterans Affairs; the Marlene S. and Leonard A. Hadley Glaucoma Research Fund.
Dr. Kwon is supported by the Clifford M. & Ruth M. Altermatt Professorship. Dr. Alward is supported by the Frederick C. Blodi Chair. Dr. Abramoff is supported by the Robert C. Watzke MD Professorship.

Financial disclosures: Abramoff (P), Sonka (P), Garvin (P)

Word Count:

Keywords: perimetry, visual field, image analysis, OCT, ganglion cell
Abstract

(250 words, 300 actual)

Purpose: A pilot study showed that prediction of individual Humphrey 24-2 visual field (HVF 24-2) sensitivity thresholds from Optical Coherence Tomography (OCT) image analysis is possible. We evaluate performance of an improved approach as well as 3 other predictive algorithms on a new, fully independent, set of glaucoma subjects.

Methods: Subjects underwent HVF 24-2 and 9-field OCT (Heidelberg Spectralis). Nerve fiber (NFL), and ganglion cell and inner plexiform layer (GCL+IPL) were co-segmented and partitioned into 52 sectors matching HVF 24-2 test locations. Average Pearson correlation of actual and predicted thresholds was determined on four prediction models (using different, physiologically plausible, combinations of GCL+IPL and NFL sectorial thicknesses). Wilcoxon rank sum test was applied to test correlation R, root mean square error (RMSE) and limits of agreement (LoA) between actual and predicted thresholds for different models. The training data consisted of the 9-field OCT and HVF 24-2 thresholds of 111 glaucoma patients from our pilot study.

Results: 112 subjects (112 eyes) with early, moderate or advanced primary and secondary open angle glaucoma were included. Subjects with less than 9 scans (15/112) or insufficient quality segmentations (11/97) were excluded. RGC-AC optimized had superior average R (95% CI)=0.74 (0.67-0.76) and RMSE (95% CI) =5.42 (3.4-7.5) dB, significantly better (p <0.05/3) than the other three models: Naïve (R=0.49, 95% CI: 0.44-0.54; RMSE=7.24 dB, 95% CI: 3.1-11.4 dB), Garway-Heath (R=0.66, 95% CI: 0.60-0.68; RMSE=6.07 dB, 95% CI: 3.4-8.8 dB), Donut (R=0.67, 95% CI: 0.61-0.69; RMSE=6.08 dB, 95% CI: 3.8-8.3 dB).

Conclusions: The proposed RGC-AC optimized predictive algorithm based on 9-field OCT image analysis and the RGC-AC concept to predict all individual HVF 24-2 test locations sensitivity thresholds is superior to previous methods and its performance is close to the reproducibility of HVF 24-2.
Introduction

The limitations of reliability and reproducibility of visual field (VF) testing, as the main parameter in assessing glaucoma damage, inhibit optimal patient care and research for improved outcome. The clinical standard for VF testing in glaucoma is automated perimetry, and the Humphrey 24-2 SITA Standard visual field (HVF 24-2) is the most widely used. However, once moderate VF loss occurs, 12-15 dB mean deviation (MD) loss or more, VF test-retest variability rises substantially\(^1-^4\) and limits a reliable determination of change.

Optical Coherence Tomography (OCT) can quantify glaucomatous damage through nerve fiber layer thickness and cup-to-disc estimates in a patient-friendly, robust and reproducible fashion.\(^5-^7\) However, OCT derived measurements of glaucoma damage correlate poorly with visual field thresholds.\(^8-^{11}\) We have previously shown that OCT based image analysis in glaucoma patients allows loss to be quantified from the retinal ganglion cell body to the optic nerve head,\(^12\) suggesting that damage to the retinal ganglion cell—axonal complex occurs simultaneously along this entire path. We proposed the term Retinal-Ganglion-Cell Axonal Complex (RGC-AC) to stress the distributed nature of this loss in multiple neighboring ganglion cells and corresponding axons, which leads to characteristic glaucomatous visual field loss, while damage to the part of the RGC-AC within the optic nerve head leads to characteristic cupping.

We also demonstrated that retinal anatomy-based analysis of multi-field SD-OCT can predict the thresholds at all 52 test locations of the most widely used Humphrey 24-2 VF with an average correlation of 0.68,\(^13\) in a leave-one-out test design. In a pilot study, average correlation between repeat Humphrey 24-2 thresholds in established glaucoma patients proficient in perimetry is 0.83, (Abramoff MD, IOVS, 2015, 56, ARVO E-abstract 1696) which allows additional improvements in the image analysis and predictive algorithm up to that performance limit to be measured. Improvements in the predictive algorithm make it of interest to compare these to our previously published approach, as well as the widely used peripapillary nerve fiber layer thickness.
assessment. In addition, an independent test population of patients with a wide range of glaucoma severity, allows a better assessment of external validity.

Thus, the purpose of this study is to a) demonstrate the performance improvement by more sophisticated OCT image analysis and b) validate this performance on an independent test set of glaucoma subjects.

Methods

Subjects

In this prospective study, inclusion criteria were as reported previously and summarized here:13: age 18–85, diagnosed with glaucoma suspect or open-angle glaucoma according to the following definitions:

- **Glaucoma suspect**: suspicious optic nerve appearance (enlarged cupping on clinical examination) with normal visual field and intraocular pressure (IOP ≤ 21 mmHg) or normal optic disc appearance on biomicroscopy and normal visual field, but with elevated IOP (> 21 mmHg).

- **Open-angle glaucoma**: primary or secondary open-angle glaucoma (e.g. exfoliative or pigmentary) with an open iridocorneal angle, glaucomatous optic disc and/or nerve fiber layer defects on biomicroscopy, and visual field changes (regardless of IOP level). Glaucomatous optic discs were identified as those with either diffuse or focal thinning of the neuroretinal rim. Visual field abnormalities were considered to be glaucomatous if they were consistent with the optic nerve examination and had either (i) a typical nerve fiber layer distribution, or (ii) a glaucoma hemifield test outside the normal limits. This diagnosis was made by fellowship trained glaucoma specialists according to the above definitions.

Subject's fundus visualization sufficient on indirect ophthalmoscopy to allow OCT; able to undergo perimetry Humphrey 24-2 VF SITA Standard with sufficient reliability (FP error<15% and FN error <25%, FL <33%); perimetry obtained within a 3-month period of SD-OCT imaging; perimetry free of artifacts, such as lens rim effects. Exclusion criteria were a history of angle closure or combined mechanism glaucoma, or any non-
glaucomatous optic neuropathy, corneal or retinal diseases that can affect visual field, cataracts or any other
disease with visual acuity < 20/40 and OCT of unsuitable quality determined by visual observation. Subjects were
recruited matching age and disease severity in one of three approximately equally sized severity groups, based
on the mean deviation of the 24-2 HVF threshold testing:

- early glaucoma (including glaucoma suspects) < 6 dB loss
- moderate glaucoma 6-12 dB loss
- advanced glaucoma > 12 dB loss.

One eye of each subject was studied. When both eyes were eligible, the study eye was chosen to reflect
adequate representation of each of the three severity groups.

Data Collection

As previously stated, 13 standardized automated perimetry based on SITA Standard 24-2 VF protocol was
performed with the Humphrey Field Analyzer (HFA II, Carl Zeiss Meditec, Inc., Dublin, CA, USA), which evaluates
the VF as threshold assessments at 52 different retinal locations (the two locations corresponding to the blind
spot were subtracted from the total of 54 locations). For OCT image acquisition, a 9-field per eye protocol was
used, where a subject sequentially fixates on a spot 12.5° apart in a 3×3 grid pattern. This protocol takes
approximately 5 min per eye and covers 60° on the retina, sufficiently large enough to include the 60° area
probed with 24-2 VF test. Each field is imaged with SD-OCT (Spectralis; Heidelberg Engineering, Inc., Heidelberg,
Germany, 768×61×496 voxels, 9.53×8.07×1.92 mm³, with a voxel size of 12.41×132.22×3.87 µm³) using eye
tracking mode. The device additionally acquires a 2D scanning laser ophthalmoscopy (SLO) fundus image
(768×768 pixels, 9.5×9.5 mm² with a pixel size of 12.41×12.41 µm²), automatically co-registered with the OCT
image by the device. Both the raw VF data, exported from the Humphrey Field Analyzer as integer threshold
data, as well as the raw OCT volumes, exported as .vol format, were de-identified, and stored in our XNAT
ophthalmology research database. 14 The study protocol was approved by the Institutional Review Board of the
University of Iowa and adhered to the tenets of the Declaration of Helsinki; written informed consent was obtained from all participants, and HIPAA compliance was adhered to.

Multi-Field Registration and Intraretinal Layer Segmentation

We have previously described how the 9-field OCT volumes are registered, and regional nerve fiber layer and ganglion cell layer thickness is quantified. In summary, all 9 individual SLO images are automatically registered, and the resulting affine (i.e. only including scaling, rotation, and translation) transformations are then applied to the corresponding OCT volumes, so that their relative positions, scales and rotations are known. The retinal layers (nerve fiber (NFL), ganglion cell and inner plexiform layer (GCL+IPL)) of all OCT volumes thus aligned, are co-segmented, taking into account the possible mutual displacements along the z-axis, using an extension of the Iowa Reference Algorithms. After co-segmentation, the volumes and segmented surfaces are stitched together to obtain a wide-field composite OCT (Figure 1) and the corresponding layer thicknesses (Figure 2). As we did previously, we partition the wide field composite OCT into 54 sectors that correspond to the HVF 24-2 SAP matrix, called Structure-Grid (S-Grid) where the automatically identified fovea and optic nerve head (ONH) center are co-registered to the fixation and the center of sector 26 respectively. Thus, essentially all A-scans in the wide field composite OCT are assigned to a corresponding S-Grid sector, and the average GCL+IPL and NFL thickness values are computed as the mean layer thickness from all A-scans in that sector, from a total of approximately 2000 A-scans per sector. Any missing thickness information of a sector, is bilinearly interpolated from the four neighboring sectors.

Prediction of VF threshold for each sector from NFL and GCL+IPL thicknesses

As we did previously, we built independent predictive models for each sector threshold, except for sectors 26 and 35 which cover the ONH area. These models only use the NFL and GCL+IPL thicknesses for one or more (structural) sectors, so no functional information is used as input to the model. In order to study the effect of the contribution of a structural sector, i.e. the contribution of a sector’s regional NFL and GCL+IPL thickness, four
models were compared for each sector threshold prediction, using four different approaches for model inputs, with their descriptors in italics, as follows:

- **Naive**: GCL+IPL and NFL thickness for the predicted sector only.
- **Donut**: NFL thickness of 10 sectors that form a donut centered on the optic nerve head. This is the approach that most closely approximates the use of peripapillary nerve fiber layer thickness measurements that is widely available in, for example, the Zeiss Cirrus SD-OCT.
- **Garway-Heath**: GCL+IPL thickness for the predicted sector, as well as all NFL sectors that fall within the Garway-Heath nerve fiber bundle distribution. This is the approach we have published previously. See Figure 3 for additional insight.
- **RGC-AC optimized**: GCL+IPL thickness for the predicted sector, as well as NFL thicknesses for a set of between 1-10 sectors following the so-called *Retinal Ganglion Cell-Axonal Complex (RGC-AC) optimized* regional path. These sets are optimized for performance on the training set and approximate the nerve fiber bundles as much as possible, by iteratively adding a sector using sequential floating forward sector search, if the marginal improvement in correlation ΔR > 0.01. See Figure 4 and 5.

All sectors of which NFL and / or GCL+IPL are used to predict the HVF 24-2 threshold for sector 14 (as an example) for **RGC-AC optimized** are shown in Figure 4, and examples of the sectors used for a single sector prediction for the other three approaches are shown in Figure 3.

Each of these four approaches creates a feature vector that is then used to train the predictive model, implemented as a support vector regression machine (SVM) with a radial basis function kernel. As previously, to account for the slight rotation between the OCT imaging and actual perimetry, the S-Grid and the 24-2 VF grid are aligned by similarity transform between two pairs of points, the center of the fovea on OCT and the fixation center and the ONH center and blind spot center. Then a thin plate spline transform is used to interpolate the actual measured thresholds on the S-Grid. Obviously this interpolation is only required when the predicted
sensitivity threshold needs to be associated with the measured sensitivity in a specific location. Each sector-specific SVM is then trained using the sector NFL and GCL+IPL thicknesses in the corresponding feature vector as described above, as well as using as the reference standard the corresponding interpolated VF thresholds for the sector.

For training the predictive algorithms we used the data collected for our previous study, as follows. We had collected HVF 24-2 and 9-field OCT with exactly the same protocol and inclusion and exclusion criteria on 142 subjects from the Glaucoma Service at the University of Iowa. Among these 142 subjects, 20 had incomplete imaging, 4 had no composite OCT volume and 7 had layer segmentation failure, and thus the data of 111 subjects could be used. A random eye from each of the remaining 111 subjects was selected the training set (111 eyes, 999 scans), of which 59 were OD and 52 were OS. 39 had early, 36 had moderate, and 36 had advanced glaucoma. Thus there were 111 (subjects) x 52 (sectors) training vectors used for training the four approaches.

All other parameters for the SVM were the same for all sectors, and no other training data was used. Once trained, each sector’s predictive model, given a corresponding previously unseen feature vector, produces a predicted threshold at that sector. To make comparison to the familiar HVF 24-2 printout easier, we simulate our result output as a grayscale map.

Statistical analysis

All left eye scans were mirrored to conform to the scans of the right eye. Primary outcome was the performance improvement, measured by Pearson correlation R between the actual and predicted HVF 24-2 thresholds, averaged over all 52 sectors, of the RGC-AC optimized approach over the other three approaches, on the independent test set of newly recruited subjects with glaucoma. Average R and RMSE were calculated by averaging the Pearson correlation coefficient (R) and RMSE between predicted and actual thresholds for all subjects for each sector, and hypotheses were tested using the Wilcoxon rank sum test. We compared the LoA
between the measured and predicted HVF 24-2 by stratifying at 10 dB, 20 dB and 30 dB, for each model. For each sector, a linear regression of all subjects predicted the difference between the predicted and measured HVF 24-2, from the mean of the predicted and measured HVF 24-2 on the Bland-Altman plots. The LoA and its 95% confidence interval were calculated from the regression line. The Wilcoxon test was applied to 2 categories, the prediction error on the regression line (called bias) to test the bias from 0, and the width of the LoA to test the range of agreements for the prediction error. These were also calculated for the repeat HVF 24-2. Significance was set at the 0.05/3 level, with Bonferroni correction. For qualitative evaluation, grayscale maps of the actual and predicted HVF 24-2 were created.

Results

We recruited 112 new consecutive participants from the Glaucoma Service at the University of Iowa. Of these 112 participants, 15/112 subjects were excluded due to incomplete imaging, and 11/97 (11%) subjects were excluded because of complete layer segmentation failure (i.e. undetectable NFL/GCL layer and/or shift of NFL lower boundary to GCL lower boundary), leaving 86 subjects for the study, and we used 48 OD & 38 OS. Thus about 15% of the total number of potential subjects had to be excluded because of segmentation failures. One eye from each of the remaining subjects formed the independent test set to evaluate the performance of the four models. An independent test set was thus collected. Demographics of the 86 subjects were mean age, 65.3 years, 38 (44.2%) were male. 30 had early, 24 had moderate, and 32 had advanced glaucoma. The cohort included 79 (self-identified) Caucasian subjects, 3 African-American, 1 Asian-American, 0 Native American subjects, and 1 Native Hawaiian/Pacific Islander (race was unknown or undisclosed for remaining 2). Among the 79 Caucasian subjects, 0 subjects identified as Hispanic, and among the 7 non-Caucasian, one identified as Hispanic.

The average Pearson correlation R (RMSE) between the interpolated, actual HFA 24-2 thresholds and OCT predicted VF thresholds for *RGC-AC optimized*, was 0.74 (5.42 dB), averaged over all severity groups, and this
correlation was significantly higher than the average \(R \) achieved by the other three approaches, Naïve, Donut, and Garway-Heath, on this dataset (Table 1). Figure 6 shows the correlation \(R \) for each sector, and for each approach, and RGC-AC optimized has significantly higher performance than all other models.

From Table 2 and 3, we conclude that the RGC-AC optimized model is significantly better than the other three over the entire range. Table 4 shows that repeat HVF in a highly select sample of good test-takers still performs better than the RGC-AC optimized model.

For qualitative evaluation, the grayscale maps that simulate the HVF 24-2 printout were generated for actual and RGC-AC optimized predicted thresholds, grouped by glaucoma severity, as shown in Figure 7, while a detailed comparison for a specific subject with advanced glaucoma is shown in Figure 8. Figure 9 compares the predictive performance of all 86 subjects for the four models for a single HVF 24-2 sector (sector 11), which shows the higher performance of the RGC-AC optimized model in the entire range of threshold values. For comparison purposes, Figure 10 shows the predictive performance of HVF 24-2 sensitivity across all sectors for RGC-AC optimized using the same box-whisker plot as used by Zhu et al., showing superior predictive performance of the RGC-AC Optimized approach compared to their approach at thresholds less than 20 dB. Average signed error from measured thresholds was -0.05dB, and average unsigned error was 4.19dB.27

If we included the 11 participants that had inadequate NFL and GCL+IPL segmentation (Figure 11), and thus did not use the inclusion criteria, the RGC-AC Optimized prediction reached a lower average correlation \(R \) over all 97 subjects of 0.66 (95% CI 0.63-0.69). This clearly shows the importance of accurate layer segmentation as well as the influence of correct NFL and GCL+IPL layer thickness values on the prediction outcome.

Discussion

The results of this study show the high predictive performance of the RGC-AC optimized approach to predict visual field thresholds from 9-field OCT image analysis, with an average correlation \(R \) of 0.74 to the actual HVF 24-2 thresholds. This performance was achieved on a newly recruited, independent population of glaucoma
subjects with a wide distribution of glaucoma severity, using the *RGC-AC Optimized* approach trained on a separate training set. Thus, no OCT images or HVF 24-2 thresholds of the subjects recruited for this study were ever used to train the machine learning prediction algorithms. In addition, the performance of the newly developed *RGC-AC optimized* approach was significantly better than three alternative approaches:

- *Naïve*, where only the nerve fiber layer, ganglion cell layer and inner plexiform layer thickness of the predicted sector are used for prediction;
- *Garway-Heath*, our previously published, and so far best approach, using both GCL+IPL thickness of the predicted sector as well as NFL thicknesses of the sectors in the presumed nerve fiber bundle paths as determined by Garway Heath, *et al.*;\(^{13}\)
- and *Donut*, the approach that uses peripapillary NFL thickness only, to mimic as close as possible this metric that is widely available on commercially available OCT devices,\(^ {20}\) even though *Donut* is a 2-D ring incorporating many more A-scans than the commercially available, 1-D “peripapillary circle.”

Based on our results, we make several observations:

1) While present, there is only a limited amount of “plateau”, or leveling off of predictive performance, at increasing severity of glaucoma. Compared to Zhu et al.’s 2010 work there is less of a plateau. We expect to continue improving prediction performance and decrease the plateau in future studies.

2) Contrary to our expectations, the performance improvement of the *RGC-AC optimized* approach over the peripapillary Donut approach is seen across the entire range of glaucoma severity, see Table 2 and 3, and as illustrated for a single sector in the scatter plot in Figure 9. This is somewhat surprising as several studies have shown a saturation effect for structure-function correlation at advanced glaucoma.\(^ {5,8,9,28,29}\) The difference here is that we averaged the correlation values from each of the 52 sectors to calculate a final average R value for each eye, as opposed to correlating mean NFL thickness with global HVF MD, i.e. using the average of only 2 numbers from each eye. As pointed out, *Donut* incorporates far more A-scans than the 1-D circle that is
commercially used. It is possible that these differences account for at least part of the much more robust correlation between structure and function across all severity levels.

3) Substantial predictive performance can be obtained assuming that actual visual field threshold sensitivity values are directly related to layer thicknesses, as a proxy of the number of axons or ganglion cells as measured with OCT. Our premise thus remains that HVF 24-2 threshold is only related to the number of RGC and their axons (i.e. the amount of RGC-AC remaining), and in fact we and others have shown age related loss of RGC-AC in normal subjects.30,31 Confirmation of this hypothesis was beyond the scope of the present study but should be investigated in the future.

4) Significantly better performance was reached by the RGC-AC optimized predictive model. This uses RGC-AC bundle paths which are similar, but not identical, to the functionally derived bundle paths that were originally described by Garway-Heath, et al.21 As can be seen in Figure 4, the RGC-AC Optimized bundle paths, and thereby the underlying ganglion cell axons, display substantial overlap. In some sectors, RGC-AC Optimized paths include NFL sectors temporal of the sector to be predicted, which is unlikely to be anatomically correct. Rather this is caused by the loss of axons in the more temporal sector covarying substantially with the loss in the predicted sector. Refinement of the paths by making the structural sectors smaller, rather than being determined by the spacing between HVF-24-2 test locations may further elucidate the population derived RGC-AC bundle paths.

5) Accurate automated segmentation of the NFL and GCL+IPL layers is a pre-requisite to achieving the reported prediction performance. Even though our NLF and GCL+IPL segmentation has matured, we excluded 11 participants (approximately 11%), because their segmentations were clearly insufficient. If included these as subjects, predictive performance was substantially lower. Though we have developed automated segmentation quality methods,32 segmentation performance clearly needs to be improved,33 before our approach can be considered for use on glaucoma patients.
6) We also replicated our second initial finding, that the correlation between structure and function is higher in the superior than in the inferior retina. The correlations of the RGC-AC optimized model over the entire field thus calculated for the superior hemifield, and the inferior hemifield were 0.82, 0.83, and 0.85 respectively. This again raises the question whether this is the consequence of an evolutionary adaptation to the inferior hemifield being more important for survival in primates.

In addition to the requirement for better segmentation, there are some additional issues: though patients with glaucoma anecdotally prefer 9-field OCT to HVF 24-2, it can still be cumbersome. Hopefully, additional improvements in wide field swept source OCT will allow the entire 60° of the posterior pole to be image with fewer fields. Currently, co-registration, co-segmentation and prediction take about 15’ minutes, and use in a busy glaucoma clinic may require faster processing times which are achievable by using Graphics Processing Units.

The average correlation R of predicted to actual sensitivity thresholds is now close to that obtained by repeat HVF 24-2. This is caused by the substantial intra-subject variability of 24-2 perimetry when estimating the ‘true’ threshold, the implication is that potential improvements in prediction become harder and harder to measure – the likelihood that the predicted and actual threshold differ because the prediction was incorrect is more and more similar to the difference being caused by noise in the actual measured threshold. In other words, a more noisy reference standard necessarily negatively affects the actual performance that can be measured. This is a challenge because one alternative, repeat visual fields, is patient unfriendly, and in our experience makes it hard to recruit a sufficient number of subjects. The repeat HVF 24-2s were obtained in a number of extremely good and motivated test takers, and thus this sample may represent the maximum obtainable repeatability of HVF 24-2. Unfortunately, no studies of the repeatability of individual testpoints in HVF 24-2 are currently available to us, so until we have finalized a formal study this is the only datapoint we have – as mentioned we feel r=0.83 does not adequately represent the
HVF 24-2 variability in glaucoma patients. Potentially, adding Pattern Electroretinogram (PERG) or Frequency Doubling Technology perimetry may allow the reference standard to be improved.36,38

Much effort has been devoted to studying the structural-functional (S-F) correlation in glaucoma. Studies10 have shown a curvilinear relationship between peripapillary retinal nerve fiber layer (PP-NFL) thickness and global VF index, such as mean deviation. Below approximately -10dB loss, the PP-NFL thickness reaches a “floor,” thus limiting its dynamic range. A similar curvilinear relationship was found between macular GCL thickness and VF with a dynamic range limited to VF better than -10dB.9 Given the nonlinear correlation between OCT and VF correlation thus established, some have advocated a combined structure–function index (CSFI) to estimate the number of retinal ganglion cells in the retina to improve early detection of glaucoma.31 Others have advocated careful examination of 2 joint OCT scans, i.e. optic nerve head NFL and macular GCL thicknesses, for localized correlation with VF thresholds, paying particular attention to the so-called “macular vulnerability zone.”39,40

More recently, Hood et al. has shown how single wide-field (9x12mm) swept source OCT, thus encompassing both optic nerve head and macula, can be used to detect early glaucoma.41 Our results confirm that wide-field OCT spanning both the optic nerve and macula provides a more robust and accurate picture of the retinal structure and should improve correlation with visual function. In fact, our 9-field co-registered 9-field OCT covers approximately 60° degree view of the posterior pole, matching the same area as the HVF 24-2 grid. This allows us to estimate the structure-function correlations, and thereby sensitivity thresholds, for all HVF 24-2 test locations, at substantial higher correlation than the circumpapillary circle scan and global VF indices. Finally, the present results demonstrate how more sophisticated models for integrating OCT structural information, what we call \textit{RGC-AC Optimized}, further improved the correlation to an average 0.74, and even higher in some individual, clinically relevant test locations.

In summary, our results show a high predictive performance of individual visual field thresholds predicted from OCT image analysis using the RGC-AC concept and the \textit{RGC-AC optimized} approach, with an average correlation
R of 0.74 to actual HFA 24-2 perimetry. This performance was obtained on a newly recruited, independent population of glaucoma subjects with a wide distribution of glaucoma severity. We believe we have laid the foundation to accurately predict visual function based on OCT structural information, using more of available information and smart algorithms. Potentially, predicted function derived objectively from OCT structure in patients with glaucoma may complement subjective visual field testing in clinical management.

Acknowledgements

The research subjects were generously provided with the help of Ms. Teresa Kopel.
Figure 1. Wide field composite OCT obtained from 9 field OCTs after co-registration, showing the central B-scan overlaid with co-segmented surfaces for a subject with advanced glaucoma. NFL and GCL+IPL thicknesses were not measured within the optic nerve head region.

Figure 2. Widefield composite OCT co-segmented nerve fiber layer thickness (left) and ganglion cell plus inner plexiform layer thickness (middle) of the same subject with advanced glaucoma, as in Figure 1. The HVF 24-2 derived S-Grid (right) illustrates the numbered sectors for all test locations, the cross marker indicates the fixation center and sector 26 the blind spot. This S-grid is aligned with the widefield OCT and used to identify the OCT sectors for which NFL and GCL+IPL thickness are calculated.
Figure 3. Sectors used for *Naive*, *Donut* and *Garway-Heath* predictive models, to predict the HVF 24-2 threshold for Sector 14. The predicted sector 14 is shown in red, the sectors of which NFL thickness is used are in green. If a sector’s NFL and GCL+IPL are both used, it is shown in orange.
Figure 4. All sectors included in each sector-specific feature vector that is used to predict the HVF 24-2 threshold for that sector using RGC-AC optimized. The predicted sector is red – this is also the sector whose GCL+IPL thickness is used. Sectors whose NFL thickness is used are green. If both NFL and GCL+IPL thicknesses are used for a sector, that sector is orange. Notice that in some cases, prediction performance was improved by including NFL sectors temporal of the sector to be predicted – this does not imply that the ganglion cell axons in that sector originate nasally, rather that damage to the axons in the more temporal sector co-varies substantially with that of the predicted sector.
Figure 5. Map of the most relevant sectors’ NFL thickness for prediction of function using RGC-AC Optimized. The number in each sector indicates the total number of sector specific predictions that sector’s NFL thickness is used for. In other words, if a sector S has ‘19’, there are 19 sectors that have sector S’s NFL thickness in their feature vector.
Figure 6. Sector-specific predictive performance R for each approach as well as average R over all sectors. The differences between R for RGC-AC optimized and the other approaches are all significant.
Figure 7. HFA 24-2 simulated printout of actual (left) and \textit{RGC-AC optimized} predicted (right) thresholds for each subject grouped by glaucoma severity (early, top; moderate, center; and bottom, advanced respectively). The box is placed around the subject that is shown in Figures 1, 2 and 8.
Figure 8. Detailed simulated printout of the actual HVF 24-2 (left column) and RGC-AC predicted HVF 24-2 (right column) thresholds, in a subject with advanced glaucoma, the same as in Figure 1, 2 and 7. Top row, dithered grayscale mapping for (a) actual, (b) predicted. Middle row, sensitivity thresholds in dB for (c) actual, (d) predicted. Bottom row, (e) differences between actual and predicted threshold per sector.
Figure 9. Bland-Altman plots of prediction error (vertical axis) and mean of the predicted and measured VF threshold for sector 11 of all 86 subjects for four models. The \textit{RGC-AC optimized} has better predictive performance over the entire range of glaucoma severities.
Figure 10.

Relationship between *RGC-AC optimized* predicted and measured sensitivity for each HVF 24-2 test location in 86 eyes, stratified by sensitivity. The bar summarizes the predictive performance over a 2-dB range from 0 to >36 dB. Thin vertical lines are 90% prediction limits (5th and 95th percentile of error), each box indicates the interquartile range of the prediction error (25th and 75th percentile of error) with the line in the box indicating the median error. The dotted line of unity indicates perfect prediction. Compared with Zhu et al., the error range for RGC-AC optimized is smaller at thresholds less than 20dB.
Figure 11. An example widefield OCT B-scan of a participant that was excluded from analysis because there is inadequate NFL and GCL+IPL segmentation.
Table 1. Averaged R and RMSE of RGC-AC optimized and the other three predictive approaches for all glaucoma severity groups.

<table>
<thead>
<tr>
<th>Performance</th>
<th>RGC-AC optimized</th>
<th>Naïve</th>
<th>Garway-Heath</th>
<th>Donut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average R</td>
<td>0.74</td>
<td>0.49</td>
<td>0.66</td>
<td>0.67</td>
</tr>
<tr>
<td>Range of R</td>
<td>[0.50, 0.85]</td>
<td>[0.08, 0.74]</td>
<td>[0.40, 0.83]</td>
<td>[0.48, 0.75]</td>
</tr>
<tr>
<td>p-Value for difference in R to RGC-AC optimized</td>
<td>-</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Average RMSE (dB)</td>
<td>5.42</td>
<td>7.24</td>
<td>6.07</td>
<td>6.08</td>
</tr>
<tr>
<td>p-Value for difference in RMSE to RGC-AC optimized</td>
<td>-</td>
<td><0.001</td>
<td>0.01</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 2. The comparison of the bias between the RGC-AC optimized model and the other three models across 52 sectors.

<table>
<thead>
<tr>
<th>Sensitivity (dB)</th>
<th>RGC-AC optimized</th>
<th>Naïve</th>
<th>Garway-Heath</th>
<th>Donut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average bias (dB)</td>
<td>p-value to RGC-AC optimized</td>
<td>Average bias (dB)</td>
<td>p-value to RGC-AC optimized</td>
</tr>
<tr>
<td>10</td>
<td>2.8</td>
<td>-</td>
<td>8.3</td>
<td><0.001</td>
</tr>
<tr>
<td>20</td>
<td>-0.01</td>
<td>-</td>
<td>1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>30</td>
<td>-2.8</td>
<td>-</td>
<td>-6.3</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 2. The comparison of the bias between the RGC-AC optimized model and the other three models across 52 sectors.
Table 3. The comparison of the width of LoA between the RGC-AC optimized model and the other three models across 52 sectors.

<table>
<thead>
<tr>
<th>Sensitivity (dB)</th>
<th>RGC-AC optimized</th>
<th>Naive</th>
<th>Garway-Heath</th>
<th>Donut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Width of LoA (dB)</td>
<td>p-value to RGC-AC optimized</td>
<td>Average Width of LoA (dB)</td>
<td>p-value to RGC-AC optimized</td>
</tr>
<tr>
<td>10</td>
<td>4.1</td>
<td>5.3</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>20</td>
<td>2.4</td>
<td>2.9</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>30</td>
<td>3.7</td>
<td>5.0</td>
<td>4.3</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Table 4. The comparison of the bias and the width of LoA between RGC-AC optimized model and repeat HVF at different sensitivities across 52 sectors.

<table>
<thead>
<tr>
<th>Sensitivity (dB)</th>
<th>RGC-AC optimized</th>
<th>Repeat HVF</th>
<th>RGC-AC optimized</th>
<th>Repeat HVF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average bias (dB)</td>
<td>p-value to RGC-AC optimized</td>
<td>Average bias (dB)</td>
<td>p-value to RGC-AC optimized</td>
</tr>
<tr>
<td>10</td>
<td>2.8</td>
<td>-0.39</td>
<td><0.001</td>
<td>4.7</td>
</tr>
<tr>
<td>20</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.9</td>
<td>2.7</td>
</tr>
<tr>
<td>30</td>
<td>-2.8</td>
<td>0.5</td>
<td><0.001</td>
<td>4.3</td>
</tr>
</tbody>
</table>
References

